MAC'S ADVANTAGE

Valves that don't stick

- Balance
- High shifting forces
- Wiping action
- Minimal friction
Let us show you via high performance demonstration kits and animated software,

HOW MAC'S PERFORMANCE ADVANTAGES HELP MAKE YOUR EQUIPMENT MORE RELIABLE - FASTER - MORE REPEATABLE.

TLD/PLD
The TLD function (Traveling Lab Demonstration) measures critical valve performance characteristics - Shifting forces, Response Time, Speed, Repeatability and Flow.
The PLD function (Proportional Lab Demonstration) measures critical proportional regulation characteristics - Response Time, Accuracy, Hysteresis, Repeatability and Flow.

Animation
Animated Software shows inner workings of various Air Valve Designs - Powerful educational tool for learning about how air valves function.
High SHIFTING FORCE
(energized)
- SHORT STROKE -

SHIFTING FORCES unaffected by changing air pressure (IN/EXH)
- BALANCE -
SHIFTING FORCES virtually unaffected by typically contaminated air
- WIPING ACTION
Low friction minimizes resistance to SHIFTING FORCES
- MINIMAL FRICTION -

Valves that don't stick

Consult our manual for the use, installation and maintenance of our Max Valves (see general catalog).
Sequence of events

(A) - Solenoid is de-energized
(B) - Solenoid is energized
- Armature is attracted magnetically downwards, extending push pin which shifts poppet from upper to lower seat.
- Movable pole piece is attracted magnetically upwards to meet the armature which compensates for difference between solenoid stroke and shorter valve stroke. Armature and pole piece therefore close regardless of valve position.

ADVANTAGES

- Short stroke solenoid produces high energization shifting force.
- High force return spring due to high force solenoid, maximizes both energization and de-energization shifting forces.
- Built-in wear compensation - valve stroke is shorter than solenoid stroke.
- Solenoid closes regardless of position of valve, virtually eliminating coil burnout on AC service.

\[\text{Short stroke} = \text{High force} = \text{Valves that don't stick} \]
SHORT STROKE - OVAL SHAPED ARMATURE

Typical solenoid force curve

- **MAC SHORT STROKE**
 - Short Stroke = High solenoid force
 - Short Stroke = High return spring force
 - Short Stroke = Low current to shift solenoid

- **OTHERS: LONG STROKE**
 - Long Stroke = Low solenoid force (off seat)
 - Long Stroke = Low return spring force
 - Long Stroke = High current to shift solenoid

- **MAC OVAL SHAPE ARMATURE**
 - Oval shape armature = Increased coil winding
 - Oval shape armature = Increased coil iron volume
 - Oval shape armature = Higher shifting forces

- **OTHERS: ROUND ARMATURE**
 - Round armature = Less coil winding
 - Round armature = Less coil iron volume
 - Round armature = Lower shifting forces
UNBALANCED POPPET = INCONSISTENT LOW SHIFTING FORCES

- Spring force (holding poppet on seat) is constant.
- Inlet air pressure acts upon a single sealing area.
- Inlet pressure x sealing area creates a force that opposes return spring shifting force.
- Force created by inlet air pressure on inlet poppet seal varies as inlet air pressure varies.
- Changing inlet pressures therefore affect energizing and de-energizing shifting forces.

DISADVANTAGES

- Normal pressure fluctuations cause inconsistent shifting forces
- Air pressure fights return spring, reducing shifting forces
- Weak return spring force
- Exhaust contaminants pass through operating solenoid parts causing sticking and coil burnout (SKINNER type)
- When air pressure rating is increased, the inlet and exhaust orifice must be reduced thereby decreasing flow through the valve
- Multiple models to cover range of vacuum to 10 Bar, 150 PSI, each with separate flow rating
- Pilot valves rated for 10 Bar, 150 PSI have very low flow
- Exhaust, located in pole piece, is restricted due to core iron requirements (SKINNER type)
BALANCED POPPET = CONSISTENT HIGH SHIFTING FORCES
Exhaust Contaminants Isolated From Solenoid Parts = Clean Solenoid

- Sealing areas are equal
- End seals balance poppet seals
- Forces created by air pressure are equal in both directions
- Changing pressure therefore has no effect on shifting forces

ADVANTAGES

- Valve shifting forces are consistent and independent of pressure fluctuations
- High solenoid and return spring forces ensure high speed and precise repeatability
- Exhaust contaminants are isolated from the solenoid
- Manual override - standard
- Constant high flow maintained throughout the pressure range - including pilot valves
- Full flow exhaust
- Universal porting - 6 functions in one valve

Valves that don’t stick

Consult our manual for the use, installation and maintenance of our Mac Valves (see general catalog).
SMALL DIRECT SOLENOID POPPET VALVE

ADVANTAGES

- 4 balanced poppets on a one-piece valve stem
- End poppets seal first on conical seats and cushion inlet poppet, eliminating cutting
- Exhaust seals are not under inlet pressure thus reducing friction
- Integral non-rising flow controls available
- Short stroking balanced poppet allows for direct solenoid operation with high shifting forces, minimized friction, fast response and high flow in a small package

Valves that don’t stick
4-WAY PILOT OPERATION

DIRECT OPERATED

ADVANTAGE:
No minimum operating pressure.

DISADVANTAGE:
Sticking due to low shifting forces in both directions on long stroke valves.

3-WAY PILOT OPERATED (Spring Only Return)

ADVANTAGE:
High shifting force in one direction.

DISADVANTAGE:
Sticking due to low return shifting force. Must be able to operate at low pressure. Therefore, return spring force is low.

3-WAY PILOT OPERATED (Air and Spring Return)

ADVANTAGE:
High shifting forces in both directions.

DISADVANTAGE:
Resistance to energizing shifting forces from air/spring return.

4-WAY PILOT OPERATED (Air Return)

ADVANTAGE:
Highest shifting forces in both directions. No resistance to shifting force in either direction. Full return piston area is utilized.

Consult our manual for the use, installation and maintenance of our Max Valves (see general catalog).
3-WAY
Solenoid Pilot Operated Large Valve

Small direct 3-way solenoid operated valve

Solenoid pilot operated large valve

Valves that don’t stick
4-WAY
Solenoid Pilot Operated Large Valve

Small direct 4-way solenoid operated valve

Solenoid pilot operated large valve

Valves that don’t stick

Consult our manual for the use, installation and maintenance of our Mac Valves (see general catalog).

100% production tested
100% Warranty 18 months
SPool & bore

Advantages

SPOOL PLUS BORE = Wiping action = Valves that don't stick

Maximizes ability to operate under contaminated conditions, while minimizing friction

- Large minimum piston area (3 cm²) provides high shifting force even at minimum operating pressure
- Air/spring assures maximum return shifting force
- Precision ground bonded spool controls compression - wipes contaminants away with minimum friction
- Chemically hardened seals eliminate creep, reduce friction and increase life
- Lubricant in rubber reduces friction - enhances nonlube service
- Two seals each controlling a single orifice provide a short stroke, less wear, minimum friction and high flow in a small package
- Patented centering seals ensure spool alignment for minimum wear
- Bore is machined, roller burnished and polished for hard smooth surface and glasslike finish - minimum friction, minimum wear and long life
- Lightweight aluminium spool allows for fast response
- One piece spool - simple construction and easy maintenance

Valves that don't stick
TYPICAL PILOT OPERATED 10 MM DESIGN

- "U cup" plus 4 "O-rings" in the bore at any one time - high friction
- 0.5 watt limited volume magnet wire plus small core iron size - low shifting force
- Unbalanced 3 way pilot - low shifting forces compromised by fluctuations in air pressure
- Small piston area - low shifting force

MAC 44 SERIES DIRECT OPERATED 10 MM DESIGN

- Balanced poppet, with no seals of any kind in a bore - no friction
- New MAC solenoid patent pending with "oval" shaped armature - provides high shifting force through more core iron and magnet wire
- Balanced poppet - high shifting forces - unaffected by fluctuations in air pressure
- Short stroke direct operated poppet valve (patented adjustable inlet seat controls stroke) - high shifting force - without small piston and no minimum operating pressure
- Large orifice "0.0024 in." (1.55 mm) minimum - resists clogging
- Strong return spring - high shifting force - even at low pressure

- Few parts - simple design
- Patented conical shaped exhaust seats act as cushions - eliminates cutting - long life
- Every valve calibrated for flow for a given coil wattage - consistent flow

Consult our manual for the use, installation and maintenance of our Mac Valves (see general catalog).
PILOT SYSTEM

ADVANTAGES

HIGH, CONSISTENT SHIFTING FORCES IN BOTH DIRECTIONS

CHECKED ACCUMULATOR

- Accumulator stores several times volume of air required to shift valve
- Accumulator (not direct inlet) feeds air spring and pilot
- Check valve protects accumulator from inlet pressure fluctuations
- Accumulator bleeds to atmosphere when inlet pressure is removed

AIR & SPRING RETURN

- Spring provides consistent shifting force at low pressure
- Air provides maximum shifting forces at both higher and lower pressures
- Air spring counterbalances air pilot pressure for consistent operation
- Spring provides memory

Valves that don’t stick
Small 3-way solenoid operated valves
#10-32 (M5) to 1/4" port size
Cv .10 to .50 (100 to 500 NL/min)

Large 3-way solenoid operated valves
#10-32 (M5) to 2 1/2" port size
Cv .40 to 60 (400 to 60000 NL/min)

Small 4-way solenoid operated valves
#10-32 (M5) to 1/4" port size
Cv .10 to 1.4 (100 to 1400 NL/min)

Large 4-way solenoid operated valves
#10-32 (M5) to 1 1/2" port size
Cv .40 to 15.9 (400 to 15900 NL/min)

Proportional pressure control valves
Stand alone or Multi-Pressure Pak®
Analog or Digital with an overall accuracy range of ±.5% to ±2.5% of full scale

Field bus products
Communication Electronics with a variety of MAC Valves' products
Input and Output capability with a variety of protocols

Consult our manual for the use, installation and maintenance of our Mot Valves (see general catalog).
THINK GLOBAL ACT LOCAL
Our global distribution network is keeping your machines running around the clock around the world

MAC VALVES, INC.
P.O. BOX 111
30569 BECK ROAD
WIXOM, MI 48393-7011
TEL: 1-800-MAC VALVES
TEL: 1 (248) 624-7700
FAX: 1 (248) 624-0549
E-mail: Mac@macvalves.com
Web Site: www.macvalves.com

MAC VALVES EUROPE, INC.
RUE MARIE CURIE, 12
B-4431 ANS (LIEGE)
BELGIUM
TEL: 32 (4) 239 68 68
FAX: 32 (4) 260 19 42
E-mail: Info@macvalves.be

MAC VALVES PACIFIC, INC.
P.O. BOX 12221
PENROSE, AUCKLAND
NEW ZEALAND
TEL: 64 (9) 634-9400
FAX: 64 (9) 634-9401
E-mail: Macvalves@xtra.co.nz

MAC VALVES, INC.
5555 ANN ARBOR ROAD
DUNDEE, MICHIGAN (MI) 48131
U.S.A.
TEL: 1 (734) 529-5099
FAX: 1 (248) 863-2111

MAC VALVES ASIA, INC., TAIWAN BRANCH
NO. 356, SEC. 2, JINLING ROAD
PIN ZHEN CITY, TAOYUAN 324, TAIWAN
TEL: +886-3-428-5490
FAX: +886-3-428-1405
E-mail: mva@macasia.com.tw