

Liquid Proportional Flow Control for Liquid Applications

MAC Valves Series PFC

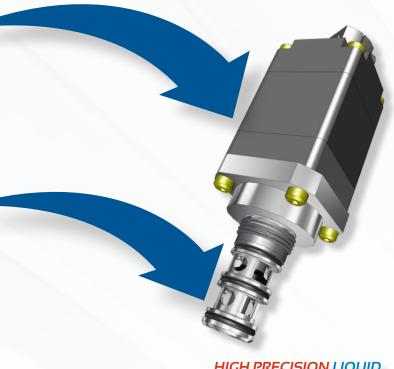
THE PRECISION OF STEPPER MOTOR TECHNOLOGY

High precision

Accurate response times

Low hysteresis

THE POWER OF THE LIQUID BULLET VALVE


High repeatability

Accurate response times

High flow flexibility

Wide range of gases & liquids

Low leak performance

HIGH PRECISION LIQUID
PROPORTIONAL FLOW CONTROL

FEATURES

- √ 2 and 3-way functions
- ✓ Liquids or gases
- ✓ Diaphragm & D-seal configurations
- √ Various Motor Sizes
- √ Nema 8 (20mm x 20mm)

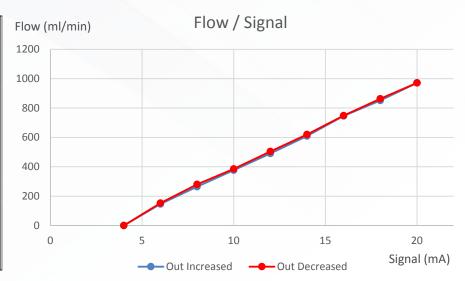
- ✓ Nema 14 (35 mm x 35 mm)
- ✓ MAC PCB driver power: 24 VDC
- ✓ Command signals: 4-20 mA or 0-10 VDC
- ✓ BVX10, BVX14, BVX21

BENEFITS OF PFC IN LIQUID DISPENSING ALREADY USED IN THE INDUSTRY

- Customized calibration available with optional driver circuit
- ✓ Optional food grade modification
 - √ Small size for better integration
- √ Very high flexibility in manifold footprint
- ✓ Drop-in solution

MAC Valves - Highly engineered solutions for the highest performing applications since 1948

TECHNICAL DATA


Function:	2-way and 3-way	
Type:	Cartridge style	
Command:	4 to 20 mA - 0 to 10 VDC (with optional driver circuit)	
Manifold mounting:	Very flexible cartridge style	
Media:	Liquids / fluids D-Flex™ (MAC patented diaphragm technology)	

Stepper motor quickly and precisely controls fluid flow through the Bullet Valve® maintaining application requirements.

MAC PROPORTIONAL FLOW CONTROL - LINEARITY

The very low hysteresis cycle of the MAC PFC guarantees a constant flow through the PFC for opening or closing signal.

	mI/min at 29 PSI	
Signal	Out incr.	Out decr.
4	0	0
6	146.4	153.4
8	264.6	280.2
10	377	385.4
12	490.8	504.2
14	609.8	620.4
16	746.4	748
18	851.2	863.2
20	971.8	

Note: Above values result from trials and are for illustration purposes only - Flow and calibration can be adapted to customer requirements.

YOUTUBE

